Darboux Transformation, Lax Pairs, Exact Solutions of Nonlinear Schrödinger Equations, and Soliton Molecules

Usama Al Khawaja,
Physics Department,
United Arab Emirates University.
23 Jan. 2012

First International Winter School on Quantum Gases
Algiers, January 21-31, 2012
General Outline

Lecture I: Darboux Transformation (DT) and Lax Pair

- Linear and Nonlinear Partial Differential Equations

Lecture II: Lax Pair Search Method and Integrability

Lecture III: Single soliton solutions

- Vibrating harmonic trap
- Optical Lattice
- Rogue waves

Lecture IV: Two solitons solutions (Soliton Molecules)

- Instructive Form of the Exact solution
- Formation, Stability, and Dynamics of Soliton Molecules
- Methods of Stabilizing Soliton Molecules
Lecture I
Darboux Transformation (DT)
and Lax Pair

Outline

I Darboux Transformation (DT)

II DT for Linear Ordinary Differential Equations
 - Schrödinger Equation with a Harmonic Potential

III DT for Nonlinear Partial Differential Equations
 - The Korteweg-de-Vries (KdV) Equation
 - The Zakharov-Shabat Method
 - The Nonlinear Schrödinger (NS) Equation

IV Search for the Lax Pairs

V Exact Solitonic Solutions of the Gross-Pitaevskii Equation
Darboux Transformation

Consider a Sturm-Liouville equation

\[-\Psi_{xx}(x) + u(x)\Psi = \lambda \Psi(x) ,\]

(1)

with known fixed eigensolution \(\Psi_1\) and eigenvalue \(\lambda_1\).

The Darboux transformation on \(\Psi\) is defined as:

\[
\Psi[1] = \left(\frac{d}{dx} - \frac{\Psi_{1x}}{\Psi_1} \right) \Psi .
\]

(2)

Theorem: The function \(\Psi[1]\) satisfies

\[-\Psi[1]_{xx} + u[1]\Psi[1] = \lambda \Psi[1] ,\]

(3)

with

\[u[1] = u - 2 \left(\frac{\Psi_{1x}}{\Psi_1} \right)_x .\]

(4)

Eq.(1) is said to be *covariant* under the DT.
DT for Linear Ordinary Differential Equations

- Schrödinger Equation With a Harmonic Potential

Consider the equation

$$\Psi_{xx} + x^2 \Psi = \lambda \Psi,$$

with seed solution \(\Psi_1 = \exp \left(\frac{x^2}{2} \right) \) and \(\lambda_1 = -1 \).

Applying DT on \(\Psi \) and \(u = x^2 \), we get

$$\Psi[1] = \left(\frac{d}{dx} - x \right) \Psi, \quad u[1] = x^2 - 2,$$

which satisfy the equation

$$-\Psi[1]_{xx} + x^2 \Psi[1] = (\lambda + 2) \Psi.$$

For example: \(\Psi = \exp \left(-\frac{x^2}{2} \right) \) with \(\lambda = 1 \), gives

$$\Psi[1] = -2x \exp \left(-\frac{x^2}{2} \right).$$

with eigenvalue \(\lambda + 2 = 3 \).

Applying the DT on \(\Psi[1] \), we get

$$\Psi[2] = (4x^2 - 2) \exp \left(-\frac{x^2}{2} \right).$$

with eigenvalue \(\lambda + 2 = 5 \).

Applying the DT on \(\Psi[1] \) \(n \)-times, we get

$$\Psi[n] = -H_n \exp \left(-\frac{x^2}{2} \right).$$
with eigenvalue $\lambda + 2 = 2n + 1$, where

$$H_n = (-1)^n \exp \left(\frac{x^2}{2} \right) \left(\frac{d}{dx} - x \right)^n \exp \left(-\frac{x^2}{2} \right)$$ \hspace{1cm} (11)$$

is the Hermite polynomial of order n.
The KdV equation reads

\[u_t = 6uu_x - u_{xxx}. \] (12)

Lax introduced the pair of operators (denoted afterwards as the *Lax pair*)

\[L = -\partial_x^2 + u, \quad A = -4\partial_x^3 + 6u\partial_x + 3u_x, \] (13)
such that the KdV equation can be written as

\[\partial_t L = [L, A]. \] (14)

The last equation can be considered as the *consistency condition* of the following linear system for an *auxiliary* field \(\Psi \)

\[
\begin{align*}
 L\Psi &= \lambda\Psi \\
 \Psi_t &= A\Psi,
\end{align*}
\] (15)

where the consistency condition is

\[(\partial_t L - [L, A])\Psi = 0, \] (16)

is equivalent to the KdV equation.

The linear system (15) is covariant under the DT. Thus

\[
\begin{align*}
 L[1]\Psi[1] &= \lambda\Psi[1] \\
 \Psi[1]_t &= A[1]\Psi[1],
\end{align*}
\] (17)
and the consistency condition becomes

\[(\partial_t L[1] - [L[1], A[1]])\Psi[1] = 0 , \tag{18}\]

which is equivalent to

\[u[1]_t = 6u[1]u[1]_x - u[1]_{xxx} . \tag{19}\]

This means that \(u[1]\) is a new exact solution of the KdV equation which can be obtained from the known exact solution \(u\) via the DT.
DT for Nonlinear Partial Differential Equations

- The Zakharov-Shabat Method

Consider the linear system

\[\Psi_t = I\Psi \Lambda + U\Psi, \quad \Psi_x = J\Psi \Lambda + U\Psi, \quad (20) \]

where \(\Lambda, I, \) and \(J \) are constant matrices and \([I, J] = 0\). The consistency condition is

\[U_t - V_x = [I, J], \quad [I, U] = [J, V]. \quad (21) \]

This linear system is found to be covariant under the following version of the DT

\[\Psi[1] = \Psi \Lambda - \sigma \Psi, \quad \sigma = \Psi_1 \Lambda_1 \Psi_1^{-1}. \quad (22) \]

Applying this DT on the linear system system, we get

\[U[1] = U + [J, \Psi_1 \Lambda_1 \Psi_1^{-1}]. \quad (23) \]
DT for Nonlinear Partial Differential Equations

- The Nonlinear Schrödinger (NS) Equation

Consider the linear system

\[
\begin{align*}
\Psi_x &= J\Psi\Lambda + U\Psi, \\
\Psi_t &= 2J\Psi\Lambda^2 + 2U\Psi\Lambda + (JU^2 - JU_x)\Psi,
\end{align*}
\]

where

\[
U = \begin{pmatrix} 0 & iq(x, t) \\ ir(x, t) & 0 \end{pmatrix}, \quad J = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix},
\]

\[
\Lambda = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \Lambda_2 \end{pmatrix}, \quad \Psi = \begin{pmatrix} \psi_1 & \psi_2 \\ \phi_1 & \phi_2 \end{pmatrix}.
\]

The consistency condition results in the equation

\[
\begin{align*}
iq_t &= q_{xx} + 2q^2 r, \\
ir_t &= -r_{xx} - 2r^2 q.
\end{align*}
\]

Under the condition \(q = r^* \), the last equation becomes

\[
ir_t + r_{xx} + 2|r|^2 r,
\]

which is a nonlinear Schrödinger equation known also as the Gross-Pitaevskii equation (GP).

Applying the DT on the above linear system, we get

\[
U[1] = U + [J, \Psi_1\Lambda\Psi_1^{-1}],
\]

which leads to

\[
r[1] = r - 2(\lambda_{21} - \lambda_{11})\phi_1\phi_2(\psi_1\phi_2 - \phi_1\psi_2)^{-1}, \quad \Lambda_1 = \text{diag}[\lambda_{11}, \lambda_{21}].
\]
Search for the Lax Pairs

- Liang et al. [Phys. Rev. Lett. 95, 050402 (2005).] found the Lax pair for the following GP equation

\[i \frac{\partial \psi(x,t)}{\partial t} + \frac{\partial^2 \psi(x,t)}{\partial x^2} + \frac{1}{4} \lambda^2 x^2 \psi(x,t) + 2a_0 e^{\lambda t} |\psi(x,t)|^2 \psi(x,t) = 0. \tag{30} \]

\[i \frac{\partial \psi(x,t)}{\partial t} + K_1(x,t) \frac{\partial^2 \psi(x,t)}{\partial x^2} + K_2(x,t) \psi(x,t) + K_3(x,t) |\psi(x,t)|^2 \psi(x,t) = 0, \tag{31} \]

where \(K_1(x,t), K_2(x,t), \) and \(K_3(x,t) \) are, in principle, arbitrary functions corresponding to effective mass, external potential including loss or gain, and nonlinearity, respectively.

- It turned out that Lax pairs exist only if certain relations between the coefficients \(K_1, K_2, K_3 \) are satisfied [V.N. Serkin et al.,IEEE 8, No.3(2002).].

- As an explicit example, we found the Lax pair of the GP equation

\[i \frac{\partial \psi(x,t)}{\partial t} + \frac{\partial^2 \psi(x,t)}{\partial x^2} + \frac{1}{4} \lambda(x)^2 \psi(x,t) + 2a(t) |\psi(x,t)|^2 \psi(x,t) = 0, \tag{32} \]

where \(a(t) = a_0 e^{\gamma(t)t} \) and \(\lambda(x) \) and \(\gamma(t) \) are assumed to be independent general functions of \(x \) and \(t \), respectively. For the special case of \(\lambda(x) = \lambda x \) and \(\gamma(t) = \lambda \), the expulsive potential case, Eq. (30), is retrieved.
The method is summarized as follows:

1. We write ψ in the form
 \[\psi(x, t) = e^{-i f(x) - \gamma(t) t/2} Q(x, t). \] (33)

2. We expand U and V in powers of Q:
 \[U = \begin{pmatrix} f_1 + f_2 Q & f_3 + f_4 Q \\ f_5 + f_6 Q^* & f_7 + f_8 Q^* \end{pmatrix}, \] (34)
 \[V = \begin{pmatrix} g_1 + g_2 Q + g_3 Q_x + g_4 QQ^* & g_5 + g_6 Q + g_7 Q_x + g_8 QQ^* \\ g_9 + g_{10} Q^* + g_{11} Q_x^* + g_{12} QQ^* & g_{13} + g_{14} Q^* + g_{15} Q_x^* + g_{16} QQ^* \end{pmatrix}, \] (35)
 where $f_{1-8}(x, t)$ and $g_{1-16}(x, t)$ are unknown function coefficients.

3. We require the consistency condition $U_t - V_x + [U, V] = 0$ to give rise to the GP equation (Eq.(32)). This results in 24 equations for the 24 coefficients:
 \[f_2 = f_3 = f_5 = f_8 = g_2 = g_3 = g_5 = g_8 = g_9 = g_{12} = g_{14} = g_{15} = 0, \]
 \[f_4 = -f_6 = \sqrt{a_0}, \ g_7 = g_{11} = \sqrt{a_0} i, \ g_4 = -g_{16} = a_0 i. \]
 Using these constant values, the equations for the rest of the coefficients simplify to
 \[g_{10} = -g_6, \] (36)
\[f_{1t} - g_{1x} = 0, \]
(37)
\[f_{7t} - g_{13x} = 0, \]
(38)
\[g_{10x} + (f_7 - f_1)g_{10} + \sqrt{a_0} (g_{13} - g_1) - \sqrt{a_0} \left[-i\lambda^2/4 - (\gamma - 2if_x^2 + \gamma t + 2f_{xx})/2 \right] = 0, \]
(39)
\[g_{10x} - (f_7 - f_1)g_{10} - \sqrt{a_0} (g_{13} - g_1) + \sqrt{a_0} \left[-i\lambda^2/4 + (\gamma + 2if_x^2 + \gamma t + 2f_{xx})/2 \right] = 0, \]
(40)
\[g_{10} + i\sqrt{a_0}(f_1 - f_7) + 2\sqrt{a_0} f_x = 0. \]
(41)

4. We solve these equations to obtain the following Lax pair:

\[U = \begin{pmatrix} f_1 & \sqrt{a_0}Q \\ \alpha_1 f_1 & -\sqrt{a_0}Q^* \end{pmatrix}, \]
(42)
\[V = \begin{pmatrix} g_1 + ia_0|Q|^2 & -g_{10}Q + i\sqrt{a_0}Q_x \\ g_{10}Q^* + i\sqrt{a_0}Q_x^* & \alpha_1 g_1 - ia_0|Q|^2 \end{pmatrix}, \]
(43)

where

\[f_1(x, t) = \frac{i\eta_2}{4\lambda_2(\alpha_1 - 1)\eta_1}, \]
(44)
\[g_1(x, t) = \frac{i \left[(c_2^2\xi^4 + c_3^2)\eta_4 - 2c_2c_3\xi^2\eta_5 \right]}{16(\alpha_1 - 1)\lambda_2^2\eta_1^2}, \]
(45)
\[g_{10}(x, t) = -\frac{a_0 \eta_6}{4 \lambda_2 \eta_1}, \]

where \(\eta_1 = c_3 + c_2 \zeta^2 \), \(\eta_2 = -4 \lambda_2 f_x \eta_1 + (\lambda_1 + 2 \lambda_2^2 x) \eta_3 \), \(\eta_3 = c_3 - c_2 \zeta^2 \), \(\eta_4 = \lambda_1^2 - 4 \lambda_0 \lambda_2^2 \), \(\eta_5 = \lambda_1^2 + \lambda_2^2 (4 \lambda_0 + 8 \lambda_1 x + 8 \lambda_2^2 x^2) \), \(\eta_6 = 4 \lambda_2 f_x \eta_1 + (\lambda_1 + 2 \lambda_2^2 x) \eta_2 \), and \(\zeta = \exp(\lambda_2 t) \).

Calculating the consistency condition using this Lax pair, we obtain the Gross-Pitaevskii equation

\[
i \frac{\partial \psi(x, t)}{\partial t} + \frac{\partial^2 \psi(x, t)}{\partial x^2} + \frac{1}{4} (\lambda_0 + \lambda_1 x + \lambda_2^2 x^2) \psi(x, t) + \frac{2a_0}{c_2 e^{\lambda_2 t} + c_3 e^{-\lambda_2 t}} |\psi(x, t)|^2 \psi(x, t) = 0,
\]

where \(\lambda_{0,1,2}, c_2 \) and \(c_3 \) are arbitrary coefficients.

5. For the special case \(c_2 = 1 \) and \(c_3 = 0 \), the above Lax pair and GP equation reduce to those of Liang et al..

6. A seed solution for the last GP equation can be derived for the general case:

\[
\psi(x, t) = A \sqrt{\text{sech} \left[\lambda_2 (2c_3 + t) \right]} \\
\times \exp \left\{ c_4 + i \left[c_1(t) + c_2(t)x + \lambda_2 \tanh \left[\lambda_2 (2c_3 + t) \right] x^2 / 4 \right]\right\},
\]

(48)
where $c_1(t)$ and $c_2(t)$ are given by

\[
\begin{align*}
\frac{\partial p}{\partial t} & = c_6 + \frac{1}{16\lambda_2^3} \left\{ \lambda_2 (c_7 - t)(\lambda_1^2 - 4\lambda_0 \lambda_2^2)
+ 8c_5 \lambda_1 \lambda_2 (\text{sech } \eta_1 - \text{sech } \eta_2)
+ (\lambda_1^2 - 16c_5^2 \lambda_2^2)(\tanh \eta_1 - \tanh \eta_2)
+ 2A^2 e^{2c_4} g_0 \int_{c_7}^t dt' \gamma(t') \text{sech } [\lambda_2 (2c_3 + t')] \right\}, \\
c_2(t) &= c_5 \text{sech } \eta_1 + \frac{\lambda_1}{4\lambda_2} \tanh \eta_1,
\end{align*}
\]

where $\eta_1 = \lambda_2(2c_3 + t)$, $\eta_2 = \lambda_2(2c_3 + c_7)$, and c_3-7 are constants of integration.
Exact Solitonic Solutions of the Gross-Pitaevskii Equation

- Linear Inhomogeneity

Using the previously-described method, we found the Lax representation for the equation

\[i \frac{\partial \psi(x, t)}{\partial t} = \left[-\frac{\partial^2}{\partial x^2} + x - p^2 |\psi(x, t)|^2 \right] \psi(x, t), \quad (51) \]

namely

\[\Psi_x = J \Psi \Lambda + U \Psi, \quad (52) \]

\[i \Psi_t = W \Psi + 2(\zeta J + U) \Psi \Lambda + 2 J \Psi \Lambda^2, \quad (53) \]

where,

\[\Psi(x, t) = \begin{pmatrix} \psi_1(x, t) & \psi_2(x, t) \\ \phi_1(x, t) & \phi_2(x, t) \end{pmatrix}, \quad J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad (54) \]

\[\Lambda = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \quad U = \begin{pmatrix} \zeta & pq(x, t)/\sqrt{2} \\ -pr(x, t)/\sqrt{2} & -\zeta \end{pmatrix}, \quad (55) \]

\[W = (\zeta^2 - x/2) J + 2 \zeta U - J (U^2 - U_x), \quad (56) \]

\[\zeta(t) = it/2, \text{ and } \lambda_1 \text{ and } \lambda_2 \text{ are arbitrary constants and} \]
\(q(x, t) = r^*(x, t) = \psi(x, t) \), and \(p = 1 \) for attractive interactions and \(p = \pm i \) for repulsive interactions.

Applying the DT, using the seed \(\psi_0(x, t) = A \exp(i\phi_0) \) we obtain for the solution of the repulsive interactions case \((p = \pm i) \)

\[
\psi(x, t) = e^{i\phi_0} \left[A \pm i\sqrt{8}\lambda_1 r \times \frac{2u_r^+ \cosh \theta - 2iu_i^+ \sinh \theta + (|u^+|^2 + 1) \cos \beta + i(|u^+|^2 - 1) \sin \beta}{(|u^+|^2 - 1) \sinh \theta + 2u_i^+ \sin \beta} \right] (57)
\]

and for the attractive interactions case \((p = 1) \), the solution is

\[
\psi(x, t) = e^{i\phi_0} \left[A - \sqrt{8}\lambda_1 r \times \frac{2u_r^+ \cosh \theta - 2iu_i^+ \sinh \theta + (|u^+|^2 + 1) \cos \beta + i(|u^+|^2 - 1) \sin \beta}{(|u^+|^2 + 1) \cosh \theta + 2u_r^+ \cos \beta} \right] (58)
\]

where \(\phi_0 = t(p^2A^2 - (t^2/3 + x)) \),
\[
\theta = \sqrt{2} \left[\Delta_r(t^2 + x) + 2(\Delta_r \lambda_{1i} - \Delta_i \lambda_{1r})t \right] - \delta_r,
\]
\[
\beta = -\sqrt{2} \left[\Delta_i(t^2 + x) + 2(\Delta_i \lambda_{1i} + \Delta_r \lambda_{1r})t \right] + \delta_i, u^\pm = \sqrt{8} p A/b^\pm,
\]
\[
b^\pm = 4\lambda_i^* \pm \Delta, \Delta = \sqrt{2\lambda_i^*^2 - p^2 A^2}, \text{ and } \delta \text{ is an arbitrary constant.}
Exact Solitonic Solutions of the Gross-Pitaevskiiii Equation

- Linear Inhomogeneity: Properties of the Solution

Depending on the arbitrary constants, we have three types of solutions:

i) oscillatory solutions.

ii) nonoscillatory solutions, i.e., single-soliton solution.

iii) oscillatory with a localized envelope.

![Graphs showing density](image)

Figure 1: Density $\rho(x) = |\psi(x)|^2$ at time $t = 0$ for the case of attractive interactions. The arbitrary constants chosen to generate these plots are: $\delta_r = \delta_i = 0$ and $A = 1$ for all plots. In (a) $\lambda_{1i} = 0, \lambda_{1r} = 0.29$, in (b): $\lambda_{1i} = 0, \lambda_{1r} = -0.6$, in (c): $\lambda_{1i} = 0, \lambda_{1r} = 0.8$, in (d): $\lambda_{1i} = 0, \lambda_{1r} = -1.5$, in (e): $\lambda_{1i} = 2, \lambda_{1r} = -0.6$, and in (f): $\lambda_{1i} = 2, \lambda_{1r} = 0.29$.
Exact Solitonic Solutions of the Gross-Pitaevskii Equation

- Linear Inhomogeneity: Properties of the Solution

Time evolution of solitons:
i) for single solitons: \(x = -t^2 - 2(\lambda_1 - \lambda_1 \Delta_i / \Delta_r)t + \delta_r / \sqrt{2} \)

ii) for multiple solitons: \(x = -t^2 - 2(\lambda_1 + \lambda_1 \Delta_r / \Delta_i)t + \delta_i / \sqrt{2} \).

→ Parabolic with trajectory acceleration of -1.

In real units, this acceleration equals \(-F/m \), where \(F \) is the force constant of the linear potential and \(m \) is the mass of an atom.

Figure 2: Surface plots of the density \(\rho(x, t) = |\psi(x, t)|^2 \) versus \(x \) and \(t \) for the attractive interactions. The upper plot corresponds to Fig. 1(d) while the lower figure corresponds to Fig 1(a).
Exact Solitonic Solutions of the Gross-Pitaevskii Equation

- Linear Inhomogeneity: Properties of the Solution

The peak of the soliton is maximum at times:

\[t = n\pi \Delta_r / \sqrt{8|\Delta|^2\lambda_1}, \] where \(n \) is an integer.

![Graph](image)

Figure 3: The soliton density along its trajectory for attractive interactions. The upper figure corresponds to Fig. 1(c) and the lower figure corresponds to Fig. 1(d).
Exact Solitonic Solutions of the Gross-Pitaevskii Equation

- Linear Inhomogeneity: Properties of the Solution

Phase of Solitons:
Phase difference equals π and is a constant of time.

Figure 4: The density (solid curve) and phase (light curve) of a solitonic solution for attractive interactions with $\delta_r = \delta_i = 0$, $A = 1$, $\lambda_{1i} = 0.03$, and $\lambda_{1r} = 0.6$. The upper plot is for $t = 0$ and the lower plot is for $t = 0.85\tau$.
Search is still ongoing for more exact solutions...